Mejora de la calidad asistencial en las unidades de cuidados intensivos. El programa PADRIS en la Tarragona Datathon 2018 (primera parte)

7 Feb

El pasado mes de noviembre, AQuAS tuvo un rol relevante con el programa PADRIS en la Critical Care Data Analysis Summit and Tarragona Datathon 2018. Teníamos pendiente comentarlo desde entonces.

El programa PADRIS contribuye a la mejora de la salud de las personas facilitando a los investigadores de los centros de investigación de Cataluña la reutilización de la información anonimizada de salud de acuerdo con el marco legal y los principios establecidos.

¿Lo vemos en la práctica, a partir de la experiencia de un profesional?

Hoy entrevistamos a Maria  Bodí (@mariabodi23), médico del servicio de Medicina Intensiva y Josep Gómez (@JosepGomezAlvarez), doctor en Biotecnología, del Hospital Universitari de Tarragona Joan XXIII, expertos en gestión clínica y aspectos de calidad y seguridad de la atención sanitaria. Como muchos profesionales de la salud, combinan la actividad asistencial con la investigación.

María Bodí

¿Cómo es tu día a día?

Como jefe de Servicio de Medicina Intensiva del hospital, en mi día a día, la principal tarea es la dirección del servicio y la organización de la asistencia al paciente crítico, coordinando el trabajo de los profesionales implicados. En el servicio trabajan más de 150 personas incluyendo profesionales de medicina (especialistas en medicina intensiva, médicos internos residentes), enfermería, auxiliares de enfermería, celadores, fisioterapeutas y secretaría. Se trata, además, de un servicio que participa y colabora en la docencia de los grados de medicina, enfermería y fisioterapia.

Trato de facilitar que los profesionales participen en la estrategia del servicio y todo esto requiere articular y coordinar todos los esfuerzos, con un objetivo claro, y dar una asistencia de calidad a nuestros pacientes. Es necesario facilitar y coordinar que los profesionales participen en la asistencia, la gestión, la docencia y la investigación en mayor o menor grado. Esto garantizará el compromiso del trabajador en la estrategia del servicio y de la organización.

Si nos centramos en el colectivo médico, cada miembro del equipo se responsabiliza de una área  en concreto de nuestra especialidad, de forma que facilitamos la formación continuada de todo el equipo, la evaluación de los resultados y el compromiso en llevar adelante las acciones que deriven del análisis de nuestros resultados.

La experiencia del formato Datathon que se hizo, ¿qué te pareció?

La Datathon fue el resultado de todo un recorrido hecho en los últimos años en el campo del uso secundario de los datos de la historia clínica de los pacientes para la gestión y la investigación de primer nivel. La experiencia fue muy buena. Ciencia pura. Médicos, tecnólogos y tecnología al servicio del análisis de los datos de la vida real, para buscar la mejor evidencia científica.

En los últimos tres años, nuestro grupo ha profundizado en el estudio de los datos y también en la evaluación de la calidad y la seguridad de los datos  para su uso secundario. Nuestros avances han permitido colaborar con otros equipos punteros, como el equipo del Dr. Leo Celi del Massachusetts Institute of Technology con quien organizamos este evento.

¿De qué forma piensas que se puede mejorar la calidad asistencial en los cuidados intensivos?

Tenemos que ir hacia la excelencia. Abordar todas las dimensiones de la calidad asistencial. Mejorar la efectividad, la seguridad y la eficiencia. Pero si hablamos de buenos resultados y eficientes, no hablamos en términos de número de acciones a un coste determinado. Hablamos de aportar valor al paciente, al equipo de trabajo, a la organización, al sistema sanitario y a la sociedad. ¿Cómo hacerlo?

Nuestro grupo ha trabajado en el desarrolo de una metodología para poder disponer de indicadores de calidad automáticos. Esto ha sido posible porque todos los dispositivos de cabecera del paciente (ventilación mecánica, monitorización, máquinas de diálisis, etc.) están conectados al sistema de información clínica, donde se integra también la información de la historia clínica del hospital, del laboratorio, de las pruebas de imagen, y donde los profesionales incluyen toda la información de forma ordenada.

De esta forma, a través de estos indicadores diseñados con tecnología innovadora, es posible evaluar procesos asistenciales y resultados. Si el profesional participa en el diseño del proceso asistencial, en la planificación, y conoce cómo se están haciendo las cosas y qué resultados tenemos, se implica y se compromete con los objetivos del servicio y de la organización.

Asimismo, es necesaro pasar de la medicina reactiva a la medicina predictiva, preventiva y personalizada. Tenemos datos para empezar  a trabajar en esta línea. Sin embargo, la dimensionalidad y la complejidad de estos datos impide que los métodos de inteligencia artificial sean fáciles de traducir en modelos clínicamente relevantes. La aplicación de métodos predictivos de vanguarda  y la manipulación de datos requiere habilidades de colaboración entre profesionales expertos del dominio médico y del tecnológico y nuevos modelos de tratamiento y análisis de datos.

Hemos leído que se puede evaluar, en tiempo real, el riesgo en una unidad de cuidados intensivos. Parece difícil de imaginar, ¿qué nos puedes decir al respecto?

Es así. Partimos de la base de que disponemos de los datos almazenados de todos los pacientes que han ingresado en una UCI, o en más de una UCI. Si la combinación de un grupo de variables (demográficas, clínicas, resultados de laboratorio) ha supuesto la aparición de una complicación o de un evento adverso, un modelo informático entrenado con estos datos puede predecir, si detecta de nuevo la combinación de este grupo de variables, el riesgo que aparezca la misma complicación o evento. Esta es la base de la medicina predictiva.

De acuerdo, pero ¿para qué sirve, a la práctica, la evaluación de este cálculo del riesgo?

Puede ir desde analizar el riesgo o predecir la aparición de una complicación en el curso de una enfermedad, un problema relacionado con la seguridad, un evento adverso, la necesidad o el incremento de la dosis de un fármaco determinado o una terapia específica. Puede predecir la probabilidad de mejoría o de empeoramiento, e incluso, el riesgo de morir de un paciente por una enfermedad.

La medicina ya dispone de calculadoras de riesgo de morir por una enfermedad basándose en bases de datos completadas con registros manuales por parte del profesional. Pero ahora, la automatización del registro de los datos -y los sistemas de información clínica en nuestras UCIs son un ejemplo de esto-, la metodología actual basada en big data y la inteligencia artificial permite un detalle muy superior en el momento de evaluar riesgos.

Cuando se habla de pasar a un model sanitario basado en valor, ¿a qué se refiere exactamente?

Se trata de una organización del trabajo alrededor de las condiciones específicas del paciente y que optimiza su cuidado. Se trata de pagar a las organizaciones y a los hospitales por el valor que aportan. Los resultados y su coste son los componentes clave del valor que el sistema sanitario y los profesionales aportamos a los pacientes. Pero si hablamos de resultados no consideramos únicamente si el paciente sale vivo de la UCI, o no. Los resultados se miden en términos de calidad, de capacidad de volver a incorporarse a su vida, a su trabajo, etc..

Por ello, para impulsar el esfuerzo de mejora, nos tenemos que basar en el trabajo multidisciplinar y el modelo sanitario basado en valor supone cambiar el modelo de negocio de la organización y hacer una inversión en sistemas de medida, de análisis de resultados clínicos y de costes.

¿Qué importancia le das al hecho que los datos se obtengan automáticamente y no manualmente?

Permite analizarlos desde una única fuente de datos, minimiza los errores y no requiere tiempo del profesional en la introducción de estos datos.

¿Cómo se incluyen automáticamente los datos?

En la UCI, los sistemas de información clínica han permitido integrar toda la información, además de los datos que los profesionales incluyen de forma ordenada durante todo el proceso de atención al paciente crítico, se integran resultados de laboratorio, de pruebas de imagen, información de la historia clínica, y los datos de todos los dispositivos de cabecera del paciente (ventilación mecánica, monitorización, máquinas de diálisis, etc.).

¿Qué entendemos por «uso secundario de los datos»?

El uso primario es el que se hace día a día, en la cabecera del paciente, para tomar decisiones sobre el diagnóstico, tratamiento y planificación del proceso de atención. Por ejemplo, de acuerdo a unos resultados de laboratorio se determina si aumento la dosis de un fármaco.

Hablamos de uso secundario cuando hablamos de utilizar los datos para la gestión o para la investigación. El objetivo final sigue siendo mejorar la atención al paciente, evidentemente.

(Continuará…)

Evaluación: Back to the Basics

22 Sep

La cultura evaluativa de AQuAS viene de lejos y la compartimos en redes estatales como REDETS e internacionales como INAHTA, HTAi y EUnetHTA. Esta evaluación hace referencia a la evaluación de tecnologías sanitarias (esto incluye la evaluación de productos sanitarios, medicamentos, programas, modelos organizativos en el ámbito de la salud y un largo etcétera que puede a su vez incluir la evaluación de cribados, tests diagnósticos e eHealth, entro otros) y  también la evaluación de la calidad de la atención asistencial.

La metodología que se usa es robusta y genera debate aún actualmente y es positivo que sea así porque este debate implica un cuestionamiento constante sobre qué hacemos y cómo lo hacemos. Cuando aparecen nuevas tecnologías, nuevas necesidades, nuevas realidades, se requieren también nuevas metodologías evaluativas o su adaptación.

“Evaluar para mejorar” es la idea básica de la evaluación pero … ¿de qué hablamos exacatamente cuando hablamos de evaluación?

No existe una respuesta simple para esta cuestión.

En este post de Mireia Espallargues, Noemí Robles y Laia Domingo hay una buena definición sobre indicadores para la evaluación clínica y de la calidad asistencial.

«Un indicador es un instrumento de medida que se utiliza para evaluar o medir aspectos concretos de la calidad de la atención a través de diversas estrategias de análisis»

En este otro post de las mismas autoras hay un ejemplo de evaluación de programas de cronicidad.

«Los resultados obtenidos de la implementación de los indicadores permitirá a los profesionales disponer de unos criterios objetivos sobre la calidad de sus intervenciones, facilitando la identificación de las fortalezas de los programas de atención a la cronicidad, y también de las áreas de mejora»

En esta línea de evaluación de la cronicidad, puede ser muy útil la aplicación de herramientas para medir multimorbilidad, tal como se puede leer en este post de Emili Vela.

«La presencia multimorbilidad está asociada a una mayor utilización de recursos asistenciales (sanitarios y sociales) y a una peor calidad de vida. En este contexto, se hace necesario medir la multimorbilidad para poder de este modo determinar su impacto en el sistema sanitario»

Otra línea de trabajo muy relacionada con evaluación la encontramos en este post de Miquel Pons, Daniel Chaverri y Luis Lobo sobre prótesis de cadera. Se trata de un estudio que muestra de forma muy clara la utilidad de los registros para la evaluación de tecnologías sanitarias.

«En el contexto actual de innovaciones y avances tecnológicos contínuos y ante una gran presión por parte de los fabricantes, el abanico de prótesis a disposición de los cirujanos ortopédicos es cada vez más grande. Esta situación hace necesario que las prótesis que se utilicen presenten evidencia científica basada en estudios clínicos o bien en datos de registros de artroplastias»

Las iniciativas que estudian la variabilidad en la práctica médica tienen un fuerte componente evaluativo también. Para introducirnos en esta cuestión, Enrique Bernal Delgado y Sandra García Armesto publicaron un post sobre cómo se trata  y cómo ha evolucionado esta cuestión a nivel internacional.

«Las experiencias más significativas se han desarrollado en contextos con una profunda cultura evaluativa y en sistemas donde la elección de aseguradoras y competencia entre proveedores constituye una de sus características fundamentales»

Desde AQuAS, Laura Muñoz presentaba en este otro post dos líneas de trabajo muy potentes: el estudio de la variabilidad en el contexto catalán y la presentación dinámica de estos resultados, una novedad absoluta por lo que a visualización de datos se refiere.

Elementos tecnológicos nuevos implican -para la evaluación- un reto intelectual y un reto por el alcance o volumen de las intervenciones a evaluar. Es reciente la publicación de un marco conceptual de evaluación de mHealth publicado en una revista con un alto factor de impacto, situada en el primer cuartil del Journal Citation Reports.

Los conceptos de eficacia, efectividad, seguridad, eficiencia e impacto organizativo, ético y social son las grandes dimensiones del marco teórico de la evaluación de tecnologías sanitarias y aquí se añade la necesidad de incorporar metodologías de otros campos y el esfuerzo constante para adaptarse a una realidad siempre cambiante.

Para acabar, insistimos en la importancia de la metodología, no como algo estático sinó como un elemento al servicio de la investigación de mejor calidad.

Para seguir avanzando en la evaluación, back to the basics también.

Entrada elaborada por Marta Millaret (@MartaMillaret)