Millora de la qualitat assistencial a les unitats de cures intensives. El programa PADRIS a la Tarragona Datathon 2018 (primera part)

7 Feb

El passat mes de novembre, AQuAS va tenir un rol rellevant amb el programa PADRIS a la Critical Care Data Analysis Summit and Tarragona Datathon 2018. Teníem pendent de parlar-ne des d’aleshores.

El programa PADRIS contribueix a la millora de la salut de les persones facilitant als investigadors dels centres de recerca de Catalunya la reutilització de la informació anonimitzada de salut d’acord amb el marc legal i els principis establerts.

Ho veiem a la pràctica, a partir de l’experiència d’un professional?

Avui entrevistem Maria  Bodí (@mariabodi23), metge del servei de Medicina Intensiva i Josep Gómez (@JosepGomezAlvarez), doctor en Biotecnologia, de l’Hospital Universitari de Tarragona Joan XXIII, experts en gestió clínica i aspectes de qualitat i seguretat de l’atenció sanitària. Com molts professionals de la salut, combinen l’activitat assistencial amb la recerca.

María Bodí

Com és el teu dia a dia?

Com a cap de Servei de Medicina Intensiva de l’hospital, en el meu dia a dia, la tasca fonamental se centra en la direcció del servei i l’organització de l’assistència al pacient crític, coordinant el treball dels professionals implicats. En el servei treballen més de 150 persones incloent professionals de medicina (especialistes en medicina intensiva, metges interns residents), infermeria, auxiliars d’infermeria, zeladors, fisioterapeutes i secretaria. Es tracta, a més, d’un servei que participa i col·labora en la docència dels graus de medicina, infermeria i fisioteràpia.

Tracto de facilitar que els professionals participin en l’estratègia del servei i tot això requereix articular i coordinar tots els esforços, amb un objectiu clar, i donar una assistència de qualitat als nostres pacients. És necessari facilitar i coordinar que els professionals participin en l’assistència, la gestió, la docència i la recerca en major o en menor grau. Això garantirà el compromís del treballador en l’estratègia del servei i de l’organització.

Si ens centrem en el col·lectiu mèdic, cada membre de l’equip es responsabilitza d’una àrea en concret de la nostra especialitat, de manera que facilitem la formació continuada de tot l’equip, l’avaluació dels resultats i el compromís en tirar endavant les accions que derivin de l’anàlisi dels nostres resultats.

L’experiència del format de Datathon que es va fer, què et va semblar?

La Datathon va ser el resultat de tot un recorregut fet en els darrers anys en el camp de l’ús secundari de les dades de la història clínica dels pacients per a la gestió i per a la recerca de primer nivell. L’experiència va ser molt bona. Ciència pura. Metges, tecnòlegs i tecnologia al servei de l’anàlisi de les dades de la vida real, per buscar la millor evidència científica.

En els darrers tres anys, el nostre grup ha aprofundit en l’estudi de les dades i també en l’avaluació de la qualitat i la seguretat de les dades per al seu ús secundari. Els nostres avenços ens han permès col·laborar amb altres equips punters, com ara l’equip del Dr. Leo Celi del Massachusetts Institute of Technology amb qui vam organitzar aquest esdeveniment.

De quina manera penses que es pot millorar la qualitat assistencial en les unitats de cures intensives?

Hem d’anar cap a la excel·lència. Abordar totes les dimensions de la qualitat assistencial. Millorar l’efectivitat, la seguretat i l’eficiència. Però si parlem de bons resultats i eficients, no parlem en termes de número d’actuacions a un cost determinat. Parlem d’aportar valor al pacient, a l’equip de treball, a l’organització, al sistema sanitari, i a la societat. Com fer-ho?

El nostre grup ha treballat en desenvolupar la metodologia per poder disposar d’indicadors de qualitat automàtics. Això ha estat possible perquè tots els dispositius de capçalera del pacient (ventilació mecànica, monitorització, màquines de diàlisi, etc.) estan connectats al sistema d’informació clínica, on s’integra també la informació de la història clínica de l’hospital, del laboratori, de les proves d’imatge, i on els professionals inclouen tota la informació de forma ordenada.

D’aquesta manera, mitjançant aquests indicadors dissenyats amb tecnologia innovadora, és possible avaluar processos assistencials i resultats. Si el professional participa en el disseny del procés assistencial, en la planificació, i coneix com s’estan fent les coses i quins resultats tenim, s’implica i es compromet amb els objectius del servei i de l’organització.

Així mateix, es requereix passar de la medicina reactiva cap a la medicina predictiva, preventiva i personalitzada. Tenim dades per començar a treballar en aquesta línia. Malgrat això, la dimensionalitat i la complexitat d’aquestes dades impedeix que els mètodes d’intel·ligència artificial siguin fàcils de traduir en models clínicament rellevants. L’aplicació de mètodes predictius d’avantguarda i la manipulació de dades requereix habilitats de col·laboració entre professionals experts del domini mèdic i del tecnològic i nous models de tractament i anàlisi de dades.

Hem llegit que es pot avaluar, en temps real, el risc en una unitat de cures intensives. Sembla difícil d’imaginar, què ens en pots dir?

Així és. Partim de la base que disposem de les dades emmagatzemades de tots els pacients que han ingressat en una UCI, o en més d’una UCI. Si la combinació d’un grup de variables (demogràfiques, clíniques, resultats de laboratori) ha suposat l’aparició d’una complicació o d’un esdeveniment advers, un model informàtic entrenat amb aquestes dades pot predir, si detecta de nou la combinació d’aquest grup de variables, el risc que aparegui la mateixa complicació o esdeveniment. Aquesta és la base de la medicina predictiva.

D’acord, però, per a què serveix, a la pràctica, l’avaluació d’aquest càlcul del risc?

Pot anar des d’analitzar el risc o predir l’aparició d’una complicació en el curs d’una malaltia, un problema relacionat amb la seguretat, un esdeveniment advers, la necessitat o l’increment de la dosi d’un determinat fàrmac o una teràpia específica. Pot predir la probabilitat de milloria o d’empitjorament, i fins i tot, el risc de morir d’un pacient per una malaltia.

La medicina ja disposava de calculadores de risc de morir per una malaltia basant-se en bases de dades completades a través del registres manuals per part del professional. Però ara, l’automatització del registre de les dades -i un exemple d’això són els sistemes d’informació clínica a les nostres UCIs-, la metodologia actual basada en big data i la intel·ligència artificial permet un detall molt superior a l’hora d’avaluar riscos.

Quan es parla de passar a un model sanitari basat en valor, què vol dir exactament?

Es tracta d’una organització del treball al voltant de les condicions específiques del pacient i que optimitza la seva cura. Es tracta de pagar a les organitzacions i als hospitals pel valor que aporten. Els resultats i el seu cost són els components clau del valor que el sistema sanitari i els professionals aportem als pacients. Però si parlem de resultats no considerem únicament si el pacient surt viu de la UCI, o no. Els resultats es mesuren en termes de qualitat, de capacitat de tornar a incorporar-se a la seva vida, al seu treball, etc.

Per això, per impulsar l’esforç de millora, ens hem de basar en el treball multidisciplinari i el model sanitari basat en valor suposa canviar el model de negoci de l’organització i fer una inversió en sistemes de mesurament, d’anàlisi de resultats clínics i de costos.

Quina importància li dones al fet que les dades s’obtinguin automàticament i no manualment?

Permet analitzar-les des d’una única font de dades, minimitza els errors i no requereix temps del professional en la introducció d’aquestes dades.

Com s’inclouen automàticament les dades?

A la UCI, els sistemes d’informació clínica han permès integrar tota la informació, a més de les dades que els professionals inclouen de forma ordenada durant el procés d’atenció al pacient crític, s’integren resultats de laboratori, de proves d’imatge, informació de la història clínica, i les dades de tots els dispositius de capçalera del pacient (ventilació mecànica, monitorització, màquines de diàlisi, etc.).

Què entenem per “ús secundari de les dades”?

L’ús primari és el que es fa dia a dia, a la capçalera del pacient, per prendre decisions quant a diagnòstic, tractament i planificació del procés d’atenció. Per exemple, d’acord a uns resultats de laboratori es determina si augmento la dosi d’un fàrmac.

Parlem d’ús secundari quan parlem d’utilitzar les dades per a la gestió o per a la recerca. L’objectiu final continua sent millorar l’atenció al pacient, evidentment.

(Continuarà…)